53 research outputs found

    Hail Sensing Probes: Feasibility Analysis for Probes to Monitor and Study Hail

    Get PDF
    This work presents the feasibility study regarding the realization of hail sensing probes for remote sensing and study of hail. The probes are designed as artificial hailstones in order to study both the physical properties of the portion of atmosphere where the formation of hail occurs and the modification of atmospheric conditions while the hailstones are falling to the ground. The basic idea is to realize sensors with a similar fluid-dynamic behavior with respect to hailstones; the density, the weight and the size of the probes are determined. Consequently, the specification of the electronic boards, sensors, and material to realize the probes are studied and presented. The hail sensing probes can be dropped by a plane, or potentially a UAV (Unmanned Aircraft Vehicle), which fly above and through the clouds where the hail formation occurs. During their falling to the ground, the sensors installed on the probe measure directly different parameters such as humidity, temperature, pressure, acceleration. All data are sent to a receiver located on the ground. The study of the sampling frequency of each sensor is presented, together with the analysis of the propagation channel, in order to assure a robust communication link between probes and the ground receiver. The energy balance is also computed. The work demonstrates that a set of this kind of disposable sensors can be realized. They can be used for efficient monitoring operations and studies of hail formation dynamics and conditions, thus increasing the set of instruments for the monitoring and remote sensing of hail

    A Wireless Sensor Network Ad-Hoc Designed as Anti-Theft Alarm System for Photovoltaic Panels

    Get PDF
    Photovoltaic (PV) systems have attracted increasing attention in last years as well as Wireless Sensor Networks (WSNs), which have been used in many application fields. In PV plants, especially in ground installations, a lot of thefts and damages occur due to the still high cost of the modules. A new experimental WSN ad-hoc has been designed to be an anti-theft alarm system. Each node of the network is directly installed under each PV string and it is equipped with an accelerometer sensor capable to detect a minimum displacement of the panel from its steady position. The WSN presents a star topology: a master node cyclically interrogates the slave nodes through RF link. It collects all the nodes responses and communicates though a RS-232 interface with a control PC checking the network status. When a slave node detects an alarm, continuous messages are sent to the control PC which turns on all the alarm signaling systems. The control PC is equipped with an open source operative system and software and provides for SMS, e-mail and sound-light signaling in case of alarm. It also communicates with a remote server where all the WSN information is stored. A first low cost experimental WSN has been already installed and it is working properl

    Localization of RFID tags for environmental monitoring using UAV

    Get PDF
    The paper presents the experimental implementation of a method to localize RFID tags in an outdoor environment using UAV. During the installation phase, it is possible to measure the coordinates of the installation point using a topographic GNSS receiver. The tags positions can evolve with time and after a specific desired period of time (e. g. 1 month or 1 year) it is necessary to relocate them. This can be done estimating the distance between the tags and a UAV, exploiting the measurements of the Received Signal Strength Indicator (RSSI). The tags are placed over an outdoor test area and a large amount of RSSI measurements are made in different position, well distributed in space, using a UAV equipped with a specific tag reader. On such data, a multilateration-based localization algorithm is applied achieving good results. The description of RFID tags is reported together with the localization algorithm, the test description and the preliminary results

    Developing a low cost multipurpose X-band FMICW radar

    Get PDF
    FMCW radar, X-band, multipurpose radar, low cost, atmospheric monitoring, target detection, radar altimete

    A Network of Portable, Low-Cost, X-Band Radars

    Get PDF
    Radar is a unique tool to get an overview on the weather situation, given its high spatio- temporal resolution. Over 60 years, researchers have been investigating ways for obtaining the best use of radar. As a result we often find assurances on how much radar is a useful tool, and it is! After this initial statement, however, regularly comes a long list on how to increase the accuracy of radar or in what direction to move for improving it. Perhaps we should rather ask: is the resulting data good enough for our application? The answers are often more complicated than desired. At first, some people expect miracles. Then, when their wishes are disappointed, they discard radar as a tool: both attitudes are wrong; radar is a unique tool to obtain an excellent overview on what is happening: when and where it is happening. At short ranges, we may even get good quantitative data. But at longer ranges it may be impossible to obtain the desired precision, e.g. the precision needed to alert people living in small catchments in mountainous terrain. We would have to set the critical limit for an alert so low that this limit would lead to an unacceptable rate of false alarm

    extreme rainfall event analysis using rain gauges in a variety of geographical situations

    Get PDF
    About 30 years of measurements made by the rain gauges located in Piedmont (Italy) have been analyzed. Rain gauges have been divided into 4 datasets considering the complex orography near Turin, namely the flatlands, mountains, hills and urban areas. For each group of gauges, the Generalized Extreme Values (GEV) distributions are estimated considering both the entire dataset of available data and different sets of 3 years of data in running mode. It is shown that the GEV estimated parameters temporal series for the 3 years dataset do not present any specific trend over the entire period. The study presented here is preliminary to a future extreme rainfall event analysis using high temporal and spatial resolution X-band weather radar with a limited temporal availability of radar maps covering the same area
    • …
    corecore